Study of Dental Cast and Cephalometric in Unoperated Adult UCLP Patients

Benny S Latief*
*Department of Oral and Maxillofacial Surgery, Faculty of Dentistry
Universitas Indonesia, Jakarta, Indonesia

ABSTRACT

Background: Early operated patients with orofacial clefts often develop a retrusive maxilla. It is not clear whether this growth disturbance is attributed to the congenital malformation itself or to the cleft surgery or both. Objective: to evaluate transversal and anterio-posterior maxillary development in unoperated adult patients with unilateral cleft lip and palate (UCLP). Methods: 68 dental casts of unoperated adult UCLP patients were compared to 24 adult controls. The casts were analysed three dimensionally using an industrial coordinate measuring machine (=CMM)(Zeiss Numerex; Carl Zeiss Stuttgart, Germany). 12 cephalograms of unoperated UCLP patients and 24 controls were available and measured for the following variables: Maxillary length, SNA, SNB, Gonial angle and SN-FH angle. The data obtained was analysed by paired t-test, level of significance was set at p<0.05. Results: measured on dental casts, the transversal distance at the level of the second molars was significantly wider and at the level of first premolar and canine significantly smaller compared to the control group. Cephalometrically there were no significant differences for the 5 cephalometric measurements. Conclusions: the presence of a cleft influences the development of the maxilla: the more extensive the cleft, the more extensive the effect on the dental arch, but the compression of the maxillary arch is limited to the anterior region. Measured cephalometrically the cleft has no influence on the anterio-posterior development of the maxilla. However, the sample size for the cephalometric study was small.

Keywords: unilateral cleft lip and palate (UCLP), dental cast, cephalometric

Author Corresponding Address:
Department of Oral and Maxillofacial Surgery, Faculty of Dentistry
Universitas Indonesia, Jakarta, Indonesia

194
INTRODUCTION

In Unilateral Cleft Lip and Palate (UCLP) that being operated at early childhood, when they reach maturity show major or minor alternation of the morphology of the alveolar bone and position of the teeth i.e retrusion of midfacial and distorsion of dento alveolar strucutre that are teeth and supporting alveolar bone. Following the initial operative treatment there are tremendous improvement, esthetically as well as functionally. But at maturity, inhibition of the maxillary development becomes obvious. Consenstration of the studies on the palatal cleft like UCLP suggest the authors believe that development abberation in the maxilla are only expected when besides lip and alveolus cleft, the palate also cleft. Transversal measurement of the maxilla is concerned in the early operated cleft lip and alveolus and palate patient only a few. Mostly conducted in cephalogram, and transversal measurement on UCLP patients are mostly focused in dental cast of babies, or deciduous dentition or mixed dentition. To our knowledge Crabb and Foster(1977) are the first try to assess dental cast on the unoperated UCLP subject.

The aims of this study is to investigated whether there is influences of the cleft as congenital malformation to the final transversal development of the maxillary in adult unoperated Unilateral Cleft Lip.

Collect UCLP Sample:
To collect UCLP patients is difficult, due to mostly of the patients suffer from upper respiratory tracks infection, and Criteria As sample must follow as below:
1. Age must be >12
2. Complete cleft of UCLP patients died at younger age
3. No operative prosedure previous
4. No orthodontic prosedur previously

MATERIAL AND METHODS:

68 dental casts of unoperated adult UCLP patients were compared to 24 adult controls. The casts were analysed three dimensionally using an industrial coordinate measuring machine(=CMM)(Zeiss Numerex; Carl Zeiss Stuttgart, Germany). 12 cephalograms of unoperated UCLP patients and 24 controls were available and measured for the following variables: Maxillary length, SNA, SNB, Gonial angle and SN-FH angle. The data obtained was analysed by paired t-test, level of significance was set at p<0.005
Measurement on dental cast

Fig. 2. 3D industrial measuring machine (=CCM) (Zeiss Numerex; Carl Zeiss Stuttgart, Germany).

Fig. 3 Every tip of buccal cusp each side we put 1 point i.e. At molar, 2 point to be measured, and at premolar and canine only 1 point

Fig. 4 Shows the measurement line

Measurement in cephalometric

Fig. 5 In cephalometric study we measured:
Maxillary length,
SNA,
SNB,

Fig. 6 Gonial angle, SN-FH
RESULT:

Table 1. The transversal measurement of the dento alveolar component on the maxillary arch width of the unoperated adult UCLP subject are summarized in table 1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>%</th>
<th>Mean</th>
<th>SD</th>
<th>Mean + SD</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCL1-2CL1</td>
<td>140</td>
<td>19.27</td>
<td>3.378</td>
<td>22.62</td>
<td>68.36</td>
<td>48.52</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>19.27</td>
<td>3.378</td>
<td>22.62</td>
<td>68.36</td>
<td>48.52</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCL2-2CL2</td>
<td>154</td>
<td>58.76</td>
<td>2.67</td>
<td>63.76</td>
<td>53.63</td>
<td>277</td>
<td>68.85</td>
<td>46.47</td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>58.76</td>
<td>2.67</td>
<td>63.76</td>
<td>53.63</td>
<td>277</td>
<td>68.85</td>
<td>46.47</td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>151</td>
<td>56.12</td>
<td>2.57</td>
<td>52.5</td>
<td>60.36</td>
<td>50.88</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>56.12</td>
<td>2.57</td>
<td>52.5</td>
<td>60.36</td>
<td>50.88</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG2-2SG2</td>
<td>151</td>
<td>55.24</td>
<td>3.105</td>
<td>253</td>
<td>62.46</td>
<td>44.55</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>55.24</td>
<td>3.105</td>
<td>253</td>
<td>62.46</td>
<td>44.55</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>157</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>157</td>
<td>49.25</td>
<td>2.923</td>
<td>233</td>
<td>56.9</td>
<td>37.89</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>49.25</td>
<td>2.923</td>
<td>233</td>
<td>56.9</td>
<td>37.89</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>157</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>157</td>
<td>49.25</td>
<td>2.923</td>
<td>233</td>
<td>56.9</td>
<td>37.89</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>49.25</td>
<td>2.923</td>
<td>233</td>
<td>56.9</td>
<td>37.89</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSG1-2SG1</td>
<td>157</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td>140</td>
<td>84.93</td>
<td>2.57</td>
<td>62.6</td>
<td>58.49</td>
<td>69.43</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Contalal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Measured on dental casts, the transversal distance at the level of the second molars was significantly wider and at the level of first premolar and canine significantly smaller compared to the control group.

Table 2. Cephalometric measurement between UCLP patients compared to the control

<table>
<thead>
<tr>
<th>Variable</th>
<th>Point to be measured</th>
<th>UCLP sample group</th>
<th>Control group</th>
<th>T-value</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasion</td>
<td>125.37</td>
<td>114.54</td>
<td>114.54</td>
<td>1.46</td>
<td>0.096</td>
</tr>
<tr>
<td>Sella</td>
<td>59.32</td>
<td>59.32</td>
<td>59.32</td>
<td>0.0</td>
<td>0.860</td>
</tr>
<tr>
<td>PNS</td>
<td>125.37</td>
<td>114.54</td>
<td>114.54</td>
<td>1.46</td>
<td>0.096</td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PNS</td>
<td>125.37</td>
<td>114.54</td>
<td>114.54</td>
<td>1.46</td>
<td>0.096</td>
</tr>
<tr>
<td>Unilateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cephalometrically there were no significant differences for the 5 cephalometric measurement variables.

DISCUSSION

The number of the analyzed patients is sufficient to allow reliable conclusion on this topic in transversal measurement on dental cast. As this study to investigate whether there are influences of surgery on the final development of adult UCLP patients, there are no publications dealing with the transversal measurements of the dento-alveolar part of the maxilla on the early operated in adult UCLP patients. Therefore comparison between early operated and unoperated adult of the UCLP is for these reason not really possible. In our sample up to the level of the second premolar the transversal dimensions of the maxilla of the UCLP group are not significant different from the transversal dimensions on the non-cleft population. This is in accordance with the finding of Bishara et al (1985) but is in contradiction with the findings of Innis (1962), who has found a compression in the premolar area of the maxilla. The samples in both studies were too small and the analysis especially of Innis is insufficient to allow reliable conclusions. The same remark are also for the publications of Widanto and Latief (1988) and Widanto (1989). In this study the maxillary inter first premolar and inter-canine width is significant smaller in the unoperated UCLP group. The cause of this reduction on the inter first premolar and inter-canine width is not clearly understood. The result of the present study support the observation of Bishara et al (1985) that the
effect of the UCLP is limited to the part of the
dento-alveolar fragment being in the vicinity of
the cleft.

The cephalometric analysis there were no
significant differences between UCLP and
control in the 5 cephalometric measurements.
This is in accordance with the study of Bishara
et al (1985)13 and Hardjowasito and Latief
(1988),14 Hardjowasito W (1989),15
cephalometrically the cleft has no influence on
the antero-posterior development of the
maxilla. However, the sample size for the
cephalometric study was small.

CONCLUSION

The presence of a cleft influences the
development of the maxilla: the more
extensive the cleft, the more extensive the
effect on the dental arch, but the compression
of the maxillary arch is limited to the anterior
region. Measured cephalometrically the cleft
has no influence on the antero-posterior
development of the maxilla. However, the
sample size for the cephalometric

REFERENCES

1. Latief BS. Dental Arch Width in Unoperated
Adult Cleft Lip and Palate. Dissertation,
University Leyden, The Netherlands. 2005
2. Latief BS, Maxillary Arch width of Unoperated
Adult of the Unilateral Cleft Lip and Palate
(UCLP) patients. \textit{Thai Journal of Oral and
Maxillofacial Surgery} 2006; 20(1).
3. Da Silva Filho OG, Machado FMDc, de Andrade
AC. Freitas JadC, Bishara SE. \textit{Upper dental}
arch morphology of unoperated adult complete
bilateral cleft lip and palate patients}. In
Transaction 8th International Congress on Cleft
Palate and cephalometric study was small.
4. Hardjowasito W. Studi sumbing bibir dan
langit-langit Unilateral pada penderita
penderita akil baliq dan dewasa yang belum
dioperasi. Disertasi Universitas Airlangga 1989
5. Bishara SE Tharp R.Effect of von langenbeck
palatoplasty on facial growth. \textit{Angle of
Orthodontics} 1977; 47:34-41
6. Bishara SE, DE Arrendono RSM, Vales HP,
Jacobsen JR. Dentofacial relationship in
persons with unoperated clefts; comparison
between three clefts type . \textit{Am J Orthod} 1985;
87:481-507.
7. Da Silva Filho OG, Machado FM, De Andrade A,
Freitas JA, Bishara SE. \textit{Upper dental arch}
morphology of unoperated adult complete
bilateral cleft lip and palate patients}. In:
Transaction 8th International Congress on Cleft
Palate and Craniofacial Anomalies. ST Lee. M
312-317
8. Jain RB, Krogman WM. Craniofacial growth in
clefting from one month to ten year as studied
by PA head film. \textit{Cleft Palate J} 1983; 20: 314-
327
9. Lekkas C, Latief BS, Hardjowasito W, kuipers
Jagtman AM. \textit{Width and elevation of the
palatal shelves in the unoperated cleft patients}
In: Transaction 8th International Congress on
Cleft Palate and related anomalies. ST Lee, M
10. Lekkas C, Latief BS, ter rahe SPN, Kuipers-
Jagtman. The unoperated adult cleft patients:
teeth in the cleft area. \textit{Eur J Plastic Surg} 2001;
24: 118-122