EFEK KUMUR EKSTRAK TEH HIJAU (*Camellia sinensis*)
TERHADAP DERAJAT KEASAMAN DAN VOLUME
SALIVA PENDERITA GINGIVITIS

Didi Adrianto Anwar*, Al. Supartinah**, Juni Handajani***

*Kepercayaan Senior Fakultas Kedokteran Gigi Universitas Gadjah Mada
**Bagian Kedokteran Gigi Anak Fakultas Kedokteran Gigi Universitas Gadjah Mada
***Bagian Biologi Mulut Fakultas Kedokteran Gigi Universitas Gadjah Mada

Abstract

Gingivitis is an inflammatory condition of gingival tissue and caused by the accumulation of dental plaque. Green tea (*Camellia sinensis*) is a plant matter that has been shown to inhibit the growth of acidogenic bacteria and the formation of dental plaque. This study aimed to evaluate the effects of green tea extract on pH and volume of saliva of gingivitis patients. The subjects were 30 male gingivitis patients, 18-25 years old. The subjects were divided into 3 groups according to mouthrinse used (0.25% and 0.5% green tea extract, and 0.1% hexetidine as positive control). The subjects were instructed to gargle during five consecutive days in the morning and at night with 5 ml of the mouthrinse for 30 seconds. The data were taken in the beginning and at the sixth day. Data for salivary volume and pH before and after gargle were compared using MANOVA (p<0.05). The results showed significant differences in salivary pH, suggesting that green tea extract can increase the salivary pH of gingivitis patients, and that the 0.5% concentration was the most influential.

Key words: green tea (*Camellia sinensis*); gingivitis; salivary pH and salivary volume

Pendahuluan

Kandungan kimiai teh hijau sama seperti yang terkandung dalam daun teh segar, yaitu senyawa polifenol (*flavonol, flavanol, flavone, flava-

vanone, iso-flavone, antocyanin*), teofilin, teobromin, vitamin C, vitamin E, vitamin B kompleks, serta sejumlah mineral seperti fluor, fosfor, kalium, stronsium, Fe, Zn, Mg, dan Mo. Polifenol yang paling banyak ditemukan dalam teh hijau adalah *flavanol*, yaitu Katekin. Katekin dalam teh hijau terdiri atas *epigallocatechin-3-gallate* (EGCG), *epigallocatechin* (EGC), *epicatechin-3-gallate* (ECG), dan *epicatechin* (EC).

Saliva merupakan cairan rongga mulut yang berfungsi antara lain melindungi jaringan dalam rongga mulut dengan cara pembersihan secara mekanis untuk mengurangi akumulasi plak, lubrikasi elemen gigi-geligi, pengaruh dapar, agregasi bakteri

*** Alamat korespondensi: e-mail: junihandayani@yahoo.com
yang dapat menghambat kolonisasi mikroorganisme, aktivitas antibakteri, pencernaan, retensi kelembaban, dan pembersihan makanan. Fungsi perlindungan ini sangat dipengaruhi oleh perubahan-perubahan yang berhubungan dengan komposisi maupun viskositas, derajat keasaman, serta susunan ion dan proteinnya.

Derajat keasaman (pH) saliva normal berkisar antara 6,7-7,3. Derajat keasaman dan kapasitas daripada saliva dapat dipengaruhi oleh irama siang dan malam, diet, dan perangsangan kecapan sekresi. Sehubungan dengan pengaruh irama siang dan malam, ternyata derajat asam dan kapasitas daripada saliva akan tinggi segera setelah bangun, tetapi kemudian cepat menurun, lima belas menit setelah makan juga akan meningkat karena adanya rangsang mekanik, namun 30-60 menit setelah makan menjadi rendah kembali. Pada malam hari derajat asam dan kapasitas daripada saliva akan meningkat, tetapi menjelang tengah malam akan turun kembali.

Diet kaya akan karbohidrat dapat menurunkan kapasitas daripada saliva karena adanya karbohidrat dapat meningkatkan produksi asam oleh bakteri. Kapasitas daripada saliva meningkat jika banyak mengkonsumsi diet kaya akan protein dan sayuran. Bakteri memanfaatkan protein sebagai sumber makanan sehingga menghasilkan zat-zat yang bersifat basa seperti amoniak.

Volume saliva dalam setiap 24 jam berkisar antara 500-600 ml. Jumlah saliva yang disekresikan dalam keadaan tidak terstimulasi sekitar 0,32 ml/menit, sedangkan dalam keadaan terstimulasi mencapai 3-4 ml/menit. Stimulasi terhadap kelembaban saliva dapat berupa rangsang olfactorius, melihat dan memikirkkan makanan, rangsang mekanis, kimia, neuronal, dan rasa sakit. Rangsang mekanis terjadi saat mengunyah makanan keras atau permen karet. Rasa manis, asam, asin, pahit dan pedas merupakan rangsang yang ditimbulkan oleh bahan kimia. Rangsang neuronal merupakan rangsang yang datang melalui saraf simpatis dan parasimpatis. Rasa sakit karena radang maupun protesa yang tidak pas juga dapat menstimulasi sekresi saliva. Selain itu stres dan kondisi psikis juga merupakan hal yang berpengaruh terhadap sekresi saliva.

Ekstrak teh hijau memiliki aktivitas antibakteri. Aktivitas antibakteri ini dipengaruhi oleh konsentrasi polifenol dalam ekstrak teh hijau. Konsentrasi penghambatan minimum dari polifenol adalah 0,25-1 mg/ml. Menurut Sakanaaka dkk., polifenol teh hijau efektif menghambat pertumbuhan bakteri penyebab penyakit periodontium yaitu Porphyromonas gingivalis dan bakteri kariogenik seperti Streptococcus mutans dan Streptococcus sobrinus. Penggunaan bahan kumur polifenol teh dengan konsentrasi 0,05% atau lebih juga terbukti menghambat pembentukan plak gigi. Teh hijau juga bersifat alkali dan berasa pahit. Sifat alkali dari teh hijau dapat menjaga keseimbangan asam basa cairan tubuh. Rasa pahit dari teh hijau karena adanya kandungan katekin. Rasa pahit ini dapat menstimulasi sekresi saliva. Total polifenol dalam teh hijau adalah 10,81 % dari berat kering daun teh, sedangkan total polifenol dalam ekstrak padat teh hijau berkisar antara 37-56 % berat kering. Oleh karena ekstrak teh hijau memiliki aktivitas antibakteri dan sifat alkali, maka diduga ekstrak teh hijau dapat digunakan sebagai bahan kumur alternatif bagi penderita gingivitis. Untuk mengetahui bagaimana efek kumur ekstrak teh hijau terhadap plak dan volume saliva penderita gingivitis, maka dilakukan penelitian ini.

Bahan dan Cara Kerja

Pembuatan ekstrak teh hijau ini dilakukan di laboratorium Pusat Penelitian Obat Tradisional (PPTOT) Universitas Gadjah Mada. Bahan kumur ekstrak teh hijau konsentrasi 0,25% dibuat dengan
cara melarutkan 250 mg serbuk kering ekstrak teh hijau dalam 100 ml akuabides. Konsentrasi 0,5% dengan melarutkan 500 mg serbuk kering ekstrak teh hijau dalam 100 ml akuabides. Sebagai kontrol digunakan Heksetidin 0,1% (Bactidol).

Subyek dalam penelitian ini adalah penderita gingivitis kriteria sedang, 17 jenis kelamin laki-laki, umur 18-25 tahun, tidak menderita penyakit sistemik, tidak menggunakan alat ortodontis atau gigi tiruan, tidak sedang menggunakan obat-obatan parasimpatomimetik seperti pilokarpin, antikolinergik, anti-hipertensi, antidepresan, antiastma, dan antibiotika. Subyek disaranakan tidak makan dan tidak minum koffein. Subyek selama 2 jam sebelum pengambilan sampel saliva. Subyek sebanyak 30 orang dibagi menjadi 3 kelompok yaitu kelompok I berkurum dengan ekstrak teh hijau dengan konsentrasi 0,25%, kelompok II verkumur dengan ekstrak the hijau konsentrasi 0,5%, dan heksetidin 0,1% sebagai kontrol positif.

Pengukuran status kesehatan gingiva dilakukan dengan inspeksi dan probing pada daerah bukal, lingual, mesial, dan distal dari 6 gigi yaitu gigi molar pertama kanan atas, insissivus lateral kanan atas, premolar pertama kiri atas, molar pertama kiri bawah, insissivus lateral kiri bawah, dan premolar pertama kanan bawah. Pemberian skor indeks gingiva (Loe dan Silness, 1963) yaitu skor 0: jika gingiva sehat, tidak ada inflamas, beradaptasi baik dengan gigi, konsistensinya normal; skor 1: jika terdapat inflamasi ringan, sedikit perubahan warna, sedikit perubahan tekstur, tidak ada perdarahan saat probing; skor 2: jika terdapat inflamasi sedang, gingiva berwarna kemerahan, terdapat edema, mengkilat, perdarahan pada saat probing, dan skor 3: jika terdapat inflamasi parah, terdapat warna kemerahan yang nyata dan edema pada gingiva, ulserasi, serta kecenderungan perdarahan spontan. Skor hasil pemeriksaan dijumlahkan kemudian dibagi dengan jumlah daerah yang diperiksa, sehingga didapatkan indeks gingiva. Kriteria status gingiva yaitu jika didapatkan indeks 0,1-1,0 tergolong gingivitis ringan, 1,1-2,0 tergolong gingivitis sedang, dan 2,1-3,0 tergolong gingivitis berat.

Sebelum perlakuan (hari ke-0) dilakukan pengambilan saliva dengan posisi subyek berdiri tegak lurus terhadap lantai. Subyek diminta untuk mengumpulkan salivanya selama 5 menit kemudian dilindahkan ke dalam pot plastik dengan cara menundukkan kepada serta langsung dilakukan pengukuran pH menggunakan pH meter (Hanna). Volume saliva yang terkumpul dalam pot plastik dipindahkan ke dalam gelas ukur dan dicatat sebagai kecepatan aliran saliva tanpa stimulasi selama 5 menit. Pengambilan sampel saliva dilakukan pada siang hari sebelum makan. Sebelum dan sesudah melakukan pengukuran pH pada setiap sampel, pH meter harus dicuci dengan akuabides dan dikeringkan dengan kertas saring.

Subyek diinstruksikan berkumur selama 5 hari pada pagi dan malam hari setelah minum gigi sesuai dengan bahan kurum yang diberikan sebanyak ± 5 ml selama 30 detik. Pengambilan sampel saliva setelah perlakuan dilakukan pada hari ke-6. Sebelum pengambilan sampel, subyek diinstruksikan berkumur sesuai dengan bahan kurum masing-masing kemudian dilakukan pengukuran pH dan volume serta indeks gingiva seperti pada pengambilan sampel selama perlakuan.

Hasil

Rerata dan simpangan baku selisih pH dan volume saliva sebelum dan sesudah berkumur dapat dilihat dalam Tabel 1. Tampak bahwa selisih rerata pH terbesar pada kelompok II, sedangkan selisih pada kelompok I dan II lebih besar dari pada selisih pada kelompok III.

Dari Tabel 2 terlihat bahwa perbedaan kenaikan pH saliva pada kelompok I terhadap kelompok III dan kelompok II terhadap kelompok III bermakna ($p=0,000$). Namun perbedaan pada kelompok I terhadap kelompok III dan kelompok II terhadap kelompok III tidak bermakna ($p=0,062$). Dengan demikian berkumur dengan ekstrak teh hijau dapat meningkatkan pH saliva tetapi tidak berpengaruh terhadap kenaikan volume saliva. Untuk mengetahui beda antara nilai rerata setiap kelompok dilakukan uji LSD$_{0,05}$ yang ditunjukkan dalam Tabel 3.

Hasil menunjukkan adanya perbedaan nilai rerata pH saliva yang bermakna antara kelompok perlakuan dengan kontrol. Sedangkan antara konsentrasi 0,25% dan 0,5% menunjukkan hasil yang tidak bermakna.

Tabel 1. Nilai rerata dan simpangan baku selisih pH dan volume saliva sebelum dan sesudah perlakuan

<table>
<thead>
<tr>
<th>Kelompok</th>
<th>n</th>
<th>pH</th>
<th>Volume (ml/menit)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>x ± SD</td>
<td>x ± SD</td>
</tr>
<tr>
<td>I. ekstrak</td>
<td>10</td>
<td>0,6000 ±</td>
<td>0,5480 ±</td>
</tr>
<tr>
<td>hijau 0,25%</td>
<td></td>
<td>0,1054</td>
<td>0,3956</td>
</tr>
<tr>
<td>II. ekstrak</td>
<td>10</td>
<td>0,6800 ±</td>
<td>0,5660 ±</td>
</tr>
<tr>
<td>teh hijau 0,5%</td>
<td></td>
<td>0,09189</td>
<td>0,0303</td>
</tr>
<tr>
<td>III. kontrol (positif)</td>
<td>10</td>
<td>0,5900 ±</td>
<td>0,2740 ±</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0,1197</td>
<td>0,1112</td>
</tr>
</tbody>
</table>
Tabel 2. Ringkasan MANOVA pengaruh kumur ekstrak teh hijau terhadap pH dan volume saliva penderita gingivitis

<table>
<thead>
<tr>
<th>Sumber Variabel terpengaruh</th>
<th>Variabel</th>
<th>Kelompok</th>
<th>Kelompok</th>
<th>Beda rata</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelompok: pH</td>
<td></td>
<td>0,25%</td>
<td>0,5%</td>
<td>0,0600</td>
<td>0,000</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td>Kontrol</td>
<td>0,2100**</td>
<td>0,000</td>
</tr>
<tr>
<td>Dalam: pH</td>
<td></td>
<td>0,5%</td>
<td>0,25%</td>
<td>0,0600</td>
<td>0,000</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
<td></td>
<td>Kontrol</td>
<td>0,2900**</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Tabel 3. Hasil uji LSD₀.₀5 antar nilai rerata pH saliva

<table>
<thead>
<tr>
<th>Variabel Terpengaruh</th>
<th>Kelompok (I)</th>
<th>Kelompok (J)</th>
<th>Beda rerata</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>0,25%</td>
<td>0,5%</td>
<td>0,0600</td>
<td>0,000</td>
</tr>
<tr>
<td>kontrol</td>
<td></td>
<td></td>
<td>0,2100**</td>
<td>0,000</td>
</tr>
<tr>
<td>0,5%</td>
<td>0,25%</td>
<td>0,0600</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>kontrol</td>
<td></td>
<td></td>
<td>0,2900**</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Pembahasan

Penelitian ini merupakan uji klinis untuk mengetahui efek ekstrak teh hijau konsentrasi 0,25% dan 0,5% sebagai bahan kumur terhadap pH dan volume saliva penderita gingivitis. Hasil pengamatan menunjukkan kenaikan pH dan volume saliva pada setiap kelompok perlakuan. Hasil uji MANOVA menunjukkan bahwa terdapat perbedaan yang bermakna pada kenaikan pH saliva. Kenaikan pH saliva pada kelompok yang berkumur dengan ekstrak teh hijau ini kemungkinan disebabkan ekstrak teh hijau bersifat alkalai sehingga dapat menetralkan asam dalam saliva. Hal ini sesuai dengan pernyataan Murphy16 bahwa teh hijau bersifat alkalai sehingga dapat mempertahankan keseimbangan asam basa cairan tubuh. Kelompok II (konsentrasi 0,5%) mempunyai rerata kenaikan pH yang tertinggi karena mempunyai konsentrasi dua kali lebih besar daripada kelompok I (konsentrasi 0,25%) dan mungkin lebih bersifat alkalai, sehingga dapat menghasilkan kenaikan pH yang lebih besar.

Kenaikan pH juga terjadi jika ada kenaikan sekresi saliva karena adanya peningkatan jumlah ion bikarbonat yang berbanding lurus dengan kecepatan sekresi saliva, terutama dari kelenjar parotis. Terdapat berbagai macam faktor yang berperan dalam stimulasi saliva di antaranya dengan stimulasi mekanis dan adanya rasa pahit.4 Kandungan polifenol berperan dalam memberikan rasa pahit dan stimulasi mekanis dapat dihasilkan dari gerakan berkumur, sehingga dapat menstimulasi sekresi saliva. Peningkatan aliran saliva juga mengakibatkan hasil-hasil metabolik bakteri serta zat toksik bakteri akan larut atau tertelan sehingga keseimbangan lingkungan rongga mulut tetap terjaga.2 Kelompok III (kontrol) menunjukkan kenaikan pH yang relatif sedikit, dan terdapat perbedaan yang bermakna jiks dibandingkan dengan kelompok I dan II. Hal ini kemungkinan disebabkan karena kenaikan pH yang terjadi hanya dipengaruhi oleh stimulasi kelenjar saliva secara mekanik dengan gerakan berkumur.

Kenaikan volume pada semua kelompok dimungkinkan karena adanya stimulasi mekanik dan pengecapan. Hal ini sesuai dengan pernyataan Amerongen4 bahwa kecepatan aliran saliva dapat ditingkatkan dengan stimulasi mekanik (berkumur) dan stimulasi pengecapan dengan adanya rasa pahit dari polifenol teh hijau.2 Stimulasi secara mekanik terjadi melalui reseptor yang terdapat pada otot-otot mastikasi, sendi temporomandibula, dan muskosa rongga mulut yang mendeteksi adanya gerakan otot dan meneruskan impuls ke sistem saraf parasimpatis sehingga terjadi peningkatan sekresi saliva.7

Stimulasi mekanik yang disertai stimulasi pengecapan (rasa pahit) dari ekstrak teh hijau kemungkinan menimbulkan efek yang tidak jauh berbeda dengan stimulasi yang hanya dihasilkan secara mekanik pada kelompok kontrol. Peningkatan konsentrasi larutan ekstrak teh hijau menjadi dua kali lebih besar mungkin tidak terlalu berpengaruh terhadap rasa pahit yang dirasakan subjek. Hal ini dapat dilihat dari rata-rata kenaikan volume saliva pada kelompok I (0,5480 ml/menit) hanya memiliki selisih sedikit dibandingkan rata-rata kenaikan volume saliva pada kelompok II (0,5660 ml/menit).

Rerata kenaikan volume saliva yang terendah pada kelompok kontrol kemungkinan disebabkan pada kelompok kontrol hanya terdapat satu macam stimulasi yaitu secara mekanik yang dihasilkan gerakan berkumur sedangkan pada kelompok I dan II terdapat dua macam stimulasi yaitu kimiaiwi dengan adanya rasa pahit dan mekanis dengan gerakan berkumur. Pada penelitian ini, rerata volume saliva tanpa stimulasi masih termasuk dalam kriteria normal. Menurut Amerongen,5 volume saliva maksimum yang dihasilkan melalui stimulasi mekanik adalah ± 0,85 ml/menit. Rerata volume saliva setelah stimulasi yang diperoleh dalam penelitian ini mendekati nilai tersebut. Hasil MANOVA dalam penelitian ini menunjukkan tidak terdapat perbedaan
yang bermakna pada kenaikan volume saliva penderita gingivitis. Hal ini diduga adanya tambahan stimulasi tidak mempengaruhi kenaikan volume saliva sehingga diperoleh hasil yang tidak bermakna. Selain itu ada faktor-faktor lain yang juga berpengaruh terhadap sekresi saliva yang tidak dapat dikendalikan dalam penelitian ini di antaranya adalah kondisi psikis dan stres. Pada saat mengalami stres, sekresi saliva dapat terhambat sehingga mengurangi kecepatan aliran saliva.

Hasil uji LSD menunjukkan perbedaan nilai rerata kenaikan pH saliva yang bermakna antara semua kelompok perlakuan dengan kontrol, dan tidak ada perbedaan yang bermakna antara konsentrasi 0,25% dan konsentrasi 0,5%. Hal ini berarti konsentrasi 0,25% dan 0,5% mempunyai pengaruh yang sama. Perbedaan yang tidak bermakna pada kenaikan pH saliva antara kelompok I (konsentrasi 0,25%) dan kelompok II (konsentrasi 0,5%) kemungkinan karena rerata kenaikan volume saliva yang dihasilkan pada kedua kelompok tersebut hampir sama. Perubahan pH saliva dipengaruhi oleh jumlah ion bikarbonat yang terbanding lurus dengan volume saliva. Pada penelitian ini rata-rata kenaikan volume saliva antara kelompok konsentrasi 0,25% dan 0,5% hampir sama sehingga kemungkinan jumlah ion bikarbonat pada saliva antara kedua konsentrasi tersebut juga hampir sama. Hal ini mengakibatkan perbedaan pH saliva kedua kelompok tersebut kecil.

Kesimpulan

Berkurum dengan ekstrak teh hijau dapat meningkatkan pH saliva, tetapi tidak meningkatkan volume saliva penderita gingivitis. Ekstrak teh hijau 0,5% memiliki pengaruh lebih besar terhadap kenaikan pH saliva, dibandingkan dengan konsentrasi 0,25%.

Perlu dilakukan penelitian lebih lanjut mengenai pengaruh komponen-komponen katekin teh hijau terhadap status saliva dan penyakit rongga mulut lainnya sehingga bahan ini selanjutnya dapat dikembangkan sebagai alternatif obat kumur.

Daftar Acuan